The optimal error exponent for Markov order estimation
نویسندگان
چکیده
AbstructWe consider the problem of estimating the order of a stationary ergodic Markov chain. Our focus is on estimators which satisfy a generalized Neyman-Pearson criterion of optimality. Specifically, the optimal estimator minimizes the probability of underestimation among all estimators with probability of overestimation not exceeding a given value. Our main result identifies the best exponent of asymptotically exponential decay of the probability of underestimation. We further construct a consistent estimator, based on Kullback-Leibler divergences, which achieves the best exponent. We also present a consistent estimator involving a recursively computable statistic based on appropriate mixture distributions; this estimator also achieves the best exponent for underestimation probability.
منابع مشابه
Order estimation for a special class of hidden Markov sources and binary renewal processes
We consider the estimation of the order, i.e., the number of hidden states, of a special class of discrete-time finite-alphabet hidden Markov sources. This class can be characterized in terms of equivalent renewal processes. No a priori bound is assumed on the maximum permissible order. An order estimator based on renewal types is constructed, and is shown to be strongly consistent by computing...
متن کاملOptimal error exponents in hidden Markov models order estimation
We consider the estimation of the number of hidden states (the order) of a discrete-time finite-alphabet hidden Markov model (HMM). The estimators we investigate are related to code-based order estimators: penalized maximum-likelihood (ML) estimators and penalized versions of the mixture estimator introduced by Liu and Narayan. We prove strong consistency of those estimators without assuming an...
متن کاملOn the estimation of the order of a Markov chain and universal data compression
We focus on the estimation of the order of a finite Markov source based on empirically observed statistics. The following performance criterion is adopted minimize the probability of underestimating the model order while keeping the overestimation probability exponent at a given prescribed level. A universal asymptotically optimal test, in the sense just defined, is proposed for the case where ...
متن کاملMarkov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives
In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...
متن کاملDevelopment of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption
Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area. Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption. This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 42 شماره
صفحات -
تاریخ انتشار 1996